Follow these instructions to ensure a smooth appointment.

Prepare for Your Appointment

No special preparation is necessary before direct arthrography. Food and fluid intake do not need to be restricted, unless a sedative will be given.

You should inform your physician of any medications you are taking and if you have any kidney problems or allergies, especially to iodinated or gadolinium-based contrast materials. Also, inform your doctor about recent illnesses or other medical conditions.

Some MRI examinations may require the patient to receive an injection of contrast into the bloodstream. Some of this contrast material can be absorbed into the joint resulting in an indirect arthrogram. The radiologist or technologist may ask if you have asthma, or allergies of any kind, such as allergy to iodine or x-ray contrast material, drugs, food, or environmental agents. However, the contrast material used for an MRI exam, called gadolinium, does not contain iodine and is less likely to cause side effects or an allergic reaction.

The radiologist should also know if you have any serious health problems or if you have recently had surgery. Some conditions, such as severe kidney disease, may prevent you from being given contrast material for having an MRI.

If you are scheduled to have MR or CT arthrography and have claustrophobia (fear of enclosed spaces) or anxiety, you may want to ask your physician about being sedated prior to the scheduled examination.

Because they can interfere with the magnetic field of the MRI unit, metal and electronic objects are not allowed in the exam room. These items include:

  • jewelry, watches, credit cards and hearing aids, all of which can be damaged
  • pins, hairpins, metal zippers and similar metallic items, which can distort MRI images
  • removable dental work
  • pens, pocket knives and eyeglasses
  • body piercings

In most cases, an MRI exam is safe for patients with metal implants, except for a few types. People with the following implants cannot be scanned and should not enter the MRI scanning area unless explicitly instructed to do so by a radiologist or technologist who is aware of the presence of any of the following:

  • cochlear (ear) implant
  • some types of clips used on brain aneurysms
  • some types of metal coils placed within blood vessels

You should tell the technologist if you have medical or electronic devices in your body, because they may interfere with the exam or potentially pose a risk, depending on their nature and the strength of the MRI magnet. Some implanted devices require a short period of time after placement (usually six weeks) before being safe for MRI examinations. Examples include but are not limited to:

  • artificial heart valves
  • implanted drug infusion ports
  • implanted electronic device, including a cardiac defibrillator, pacemaker or retained leads.
  • artificial limbs or metallic joint prostheses
  • implanted nerve stimulators
  • metal pins, screws, plates, stents or surgical staples

Women should always inform their physician and x-ray technologist if there is any possibility that they are pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to radiation. If an x-ray is necessary, precautions will be taken to minimize radiation exposure to the baby. Though MRI does not use ionizing radiation, women should still inform their physician and technologist if they may be pregnant.

How This Service Works

Fluoroscopy uses a continuous or pulsed x-ray beam to create a sequence of images that are projected onto a fluorescent screen, or television-like monitor. When used with a contrast material, which clearly defines the area being examined by making it appear dark (or by electronically reversing the image contrast to white), this special x-ray technique makes it possible for the physician to view joints or internal organs in motion. Still images or movies are also captured and stored either on film or electronically on a computer.

Unlike conventional x-ray examinations and computed tomography (CT) scans, MRI does not depend on ionizing radiation. Instead, while in the magnet, radio waves redirect the axes of spinning protons, which are the nuclei of hydrogen atoms.

The magnetic field is produced by passing an electric current through wire coils in most MRI units. Other coils, located in the machine and in some cases, placed around the part of the body being imaged, send and receive radio waves, producing signals that are detected by the coils.

A computer then processes the signals and generates a series of images, each of which shows a thin slice of the body. The images can then be studied from different angles by the interpreting radiologist.

Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with MRI than with other imaging modalities such as x-ray, CT and ultrasound.

 

Fluoroscopy uses a continuous or pulsed x-ray beam to create a sequence of images that are projected onto a fluorescent screen, or television-like monitor. When used with a contrast material, which clearly defines the area being examined by making it appear dark (or by electronically reversing the image contrast to white), this special x-ray technique makes it possible for the physician to view joints or internal organs in motion. Still images or movies are also captured and stored either on film or electronically on a computer.

Unlike conventional x-ray examinations and computed tomography (CT) scans, MRI does not depend on ionizing radiation. Instead, while in the magnet, radio waves redirect the axes of spinning protons, which are the nuclei of hydrogen atoms.

The magnetic field is produced by passing an electric current through wire coils in most MRI units. Other coils, located in the machine and in some cases, placed around the part of the body being imaged, send and receive radio waves, producing signals that are detected by the coils.

A computer then processes the signals and generates a series of images, each of which shows a thin slice of the body. The images can then be studied from different angles by the interpreting radiologist.

Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with MRI than with other imaging modalities such as x-ray, CT and ultrasound.

 

For additional details concerning the above procedures, please visit www.radiologyinfo.org